Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation.

نویسندگان

  • Karin Strijbis
  • Carlo W T van Roermund
  • Wouter F Visser
  • Els C Mol
  • Janny van den Burg
  • Donna M MacCallum
  • Frank C Odds
  • Ekaterina Paramonova
  • Bastiaan P Krom
  • Ben Distel
چکیده

In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular acetyl unit transport in fungal carbon metabolism.

Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathw...

متن کامل

Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.

Acetyl coenzyme A (acetyl-CoA) is the central intermediate of the pathways required to metabolize nonfermentable carbon sources. Three such pathways, i.e., gluconeogenesis, the glyoxylate cycle, and beta-oxidation, are required for full virulence in the fungal pathogen Candida albicans. These processes are compartmentalized in the cytosol, mitochondria, and peroxosomes, necessitating transport ...

متن کامل

Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans.

The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced ...

متن کامل

Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phen...

متن کامل

Investigation the expression Candida albicans EFG1 gene in Vaginal Candidiasis and biofilm formation

Candida albicans has the ability to change between yeast and hyphal cells and is known to be a virulence property. Efg1gene of C.albicans is as a main transcription factor that plays pivotal roles in biofilm formation The aim of the current study is to investigate the presence of Efg1 gene in Candida albicans isolates from women with vaginal candidiasis and its impact on biofilm formation.We us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eukaryotic cell

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2008